FLGS-TDP (XM1000 Model)

Transpiration

NEW W/ CR1000 DYNAMAX

precipitation

rive

Overview

- TDP Sap velocity sensor
- TDP Principle of Measurement
- Installation Procedures and tips
- FLGS-TDP (XM1000 Model)
- Specifications
- Features & Benefits
- Programming and data format
- Applications

What Are We Measuring?

Transpiration

"The evaporation of water from plants occurring primarily at the leaves through open stomata during the process of CO₂ gas exchange during photosynthesis"

Factors that affect Transpiration

- Light Stimulates Stomatal opening & leaf warming.
- Temp- At 30 °C a plant may transpire 3 times faster than at 20 °C
- Humidity Increases the diffusion gradient between the ambient air & leaf
- Wind Decreased leaf boundary layer resistance.
- Soil Water When absorption of water by the roots fails to meet transpiration, loss of turgor & stomatal closure occurs.

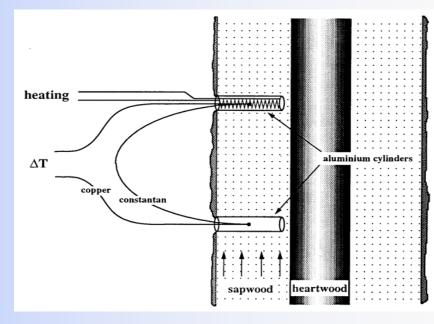
Thermal Dissipation Sap Velocity

Probe consists of two needles

- -(-) Reference T-Type Thermocouple
- -(+) T-Type Thermocouple & Heater

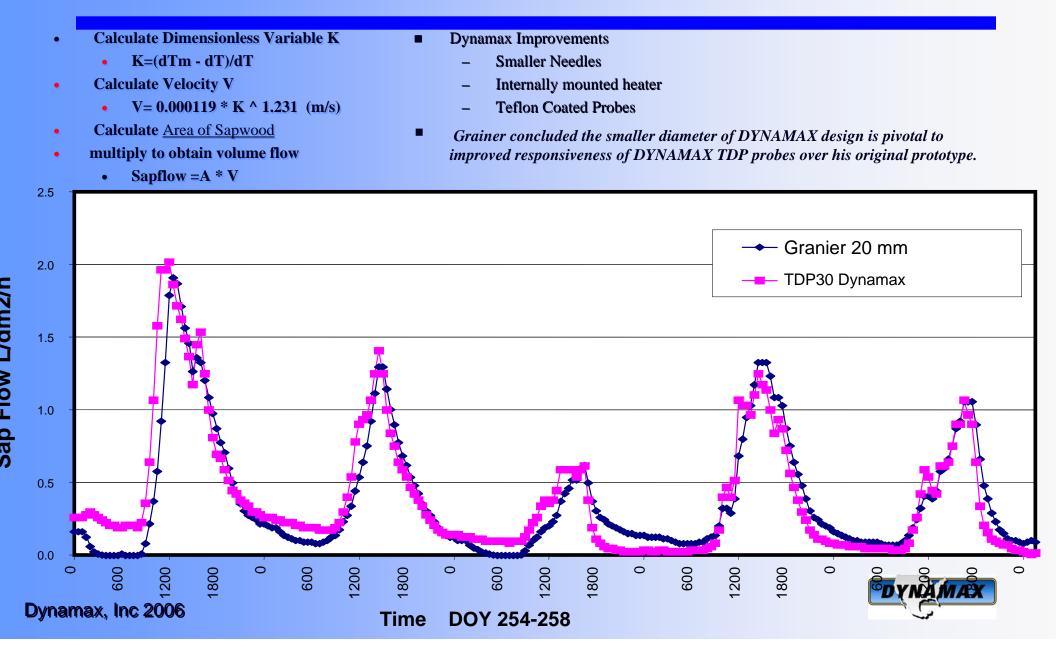
NO FLOW Conditions

Maximum dT occurs when the needle is hottest

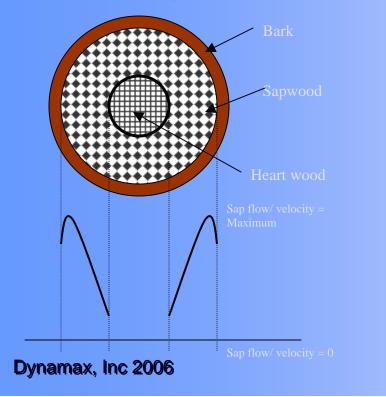

HIGH FLOW Conditions

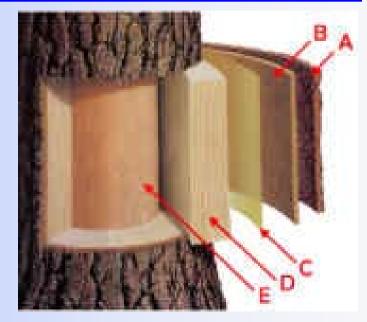
Minimum dT occurs when the needle is coolest

Auto Zero (dTM)


Maximum dT is recorded and averaged pre-dawn

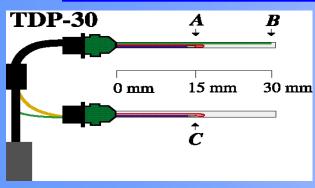
i.e. the zero flow set point.




TDP Principle

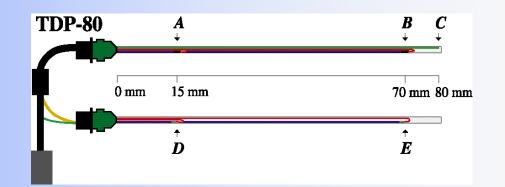
Sapwood Area

- (A) Outer Bark
 (B) Inner Bark
 (C) Cambium Layer
 (D) Sapwood
 - (E) Heartwood
- Only the Sapwood conducts water
- Only the sapwood needs to be measured.



- •Methods to determine sapwood area
 - •Die-test
 - •Using Incremental core
 - •Analytical methods
 - •Establish Statistical relationship
 - $\bullet S_{A} = -0.0039 + 0.59 S_{T}$
 - •Other Methods

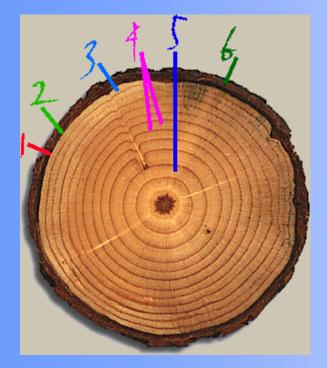
TDP Specifications


A- Thermocouple #1 B- Heater C-Reference Thermocouple

Model

TDP-30

C


Length	30mm
Diameter	1.2 mm
T-Type T/C's	1 ea
Probe Spacing	40 mm
Power	0.15 to 0.2 v
Cable Standard	10ft/ 5 cond
Heater Resistance	45 Ohms
Operating Volts	3.0 V @~8°
Signal Out	40 uV/°C
Dynamax, Inc 2006	

- A- Thermocouple #1
- **B-** Thermocouple #2
- **C-Heater**
- **D- Reference Thermocouple**
- **E- Reference Thermocouple**

How Many Sensors Not How Long!

• Uniform Growth Conditions

Non-uniform Growth Conditions

Dynamax, Inc 2006

Features and Benefits

Features

- INRA research(Granier) design
- CR1000 Logger
- Verified & supported math
- Two needles epoxy sealed
- Teflon coated probes
- International License
- Multiple probe size
- One differential channel
- Low voltage operation Dynamax, Inc 2006

Benefits

Continuous Sap Velocity

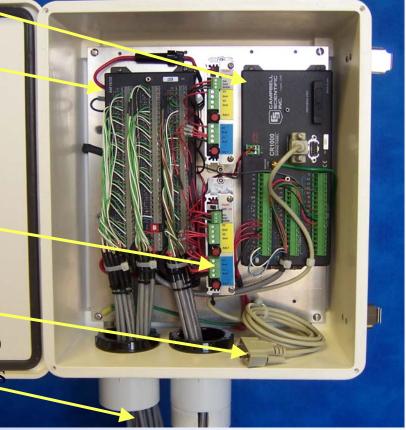
Simple data calculation/analysis

- Durable, Reusable Design
- Real-Time Data Acquisition
- Monitor multiple trees
- Monitor large trees
- Universal logger compatibility
- Easy voltage regulation

Installation Procedure

- **1. Prepare the Probe Site:**
 - Select a height 1-2 meters above the ground
 - **Remove old rough bark to cambium layer. 4cm wide and 10 cm tall**
- 2. Drill Holes:
 - Place the Drilling Jig flat on the prepared surface
 - Drill a holes
- 3. Install Probes:
 - Insert the heater in the top hole & the reference in the bottom
 - Insert needles slowly and gradually
 - Tape cables to the tree for support
- 4. Insulation:
 - Install a water proof seal around the needles
 - Secure Foam Quarter spheres around probes
 - Install thermal insulation using reflective foam Bubble Wrap
- 5. Probe Removal:
 - **Do NOT** pull on the base of the needle, **Never** use Claw hammers or long Levers
 - Always use the <u>supplied nail removing Pry-bar</u>

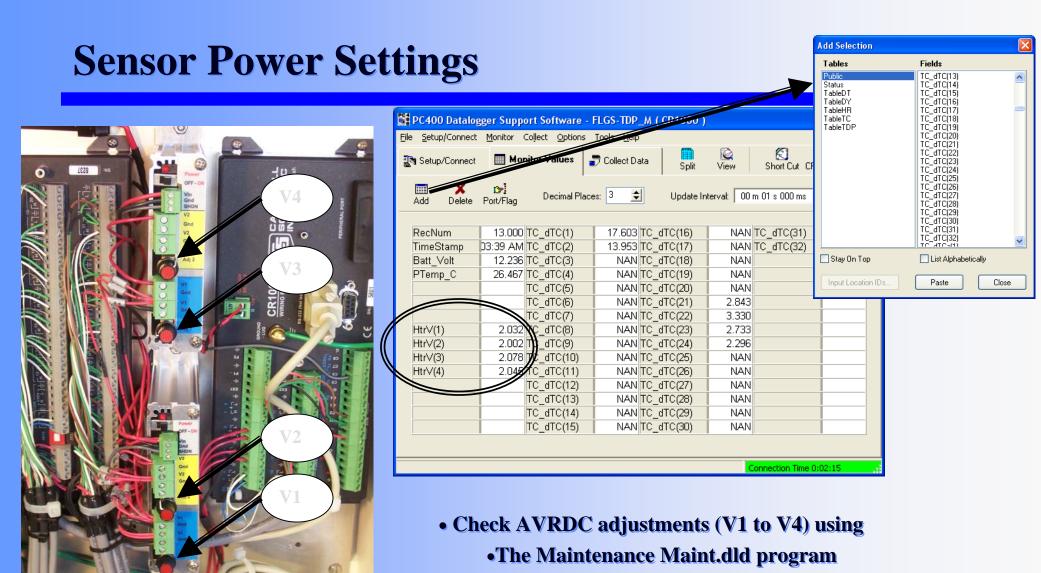
Dynamax, Inc 2006


FLGS-TDP (XM1000 Model)

- New CR1000 Logger
- New AVRD (High-current & High-efficiency)
- Simple programming using CRBasic or your favorite text editor
- PC400 logger support software
- Logger Net for advanced applications with scheduling and networks
- Enter sensor, system and field parameters in the logger program
- .csv formatted data in different files/ tables
- Sap velocity, sap flow, daily accumulators calculated in the logger.
- Excel recalculation spread sheet

FLGS – TDP Specifications

Datalogger	: CR1000 logger				
Base Inputs	: 8 Differential-Analog				
Expansion	: AM16/32 Relay Multiplexer				
Total Inputs	: 32 Differential-Analog				
Capacity	: 32 TDP10/ 30/50				
	16 TDP80, 10 TDP100				
Range	: +/- 2.5 mV				
Resolution	: 0.33 uV				
Voltage	: AVRD 0 -10 V, 5A ea.				
(High-efficiency, High-Current)					
Base Memory	: 2 MB (200 days memory capacity)				
Optional Memo	ory:4Mb				
Communication	ns: 9-PIN Male RS232 (optional USB)				
Sensor Cables	: 8' long assembled, extension cables				
in steps of 25'					
Dimensions	: 43 x 35 x 16 cm				
Program	: Using CRBasic				
Software	: PC400,				
Dynamax, Inc 2006	FLGS-TDP CDROM w/ programs				

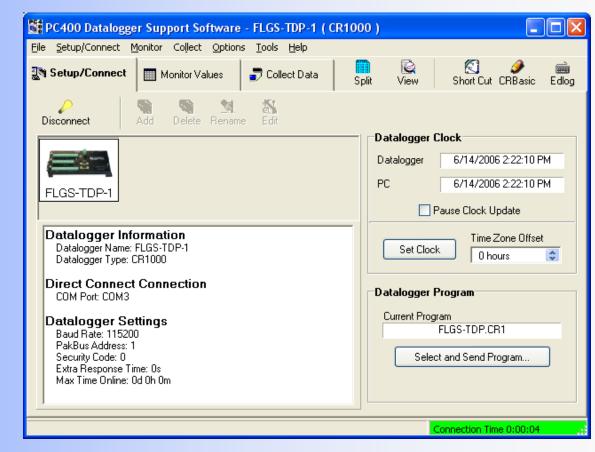


Features & Benefits

- Real time sap flow calculations
- Up to 32 Sap Velocity Measurements
- Thermocouple sapflow v/s plant sapflow
- Daily accumulated stored in memory
- Sap flow indexing
- Water usage, daily accumulators
- Expandable up to 128 TDP measurements or a combination of sap flow and weather station using secondary multiplexer systems.
- Easy, Accurate and Portable System
- For Field or Greenhouse Applications
- Sap flow calculation spread sheets
- Data analysis support

- Numerical Display option (LoggerNet / PC400)
- Voltmeter

Software: Setup Logger


- PC400 software
- Add Device, select CR1000
- (Optional)Change Data logger name to custom "FLGS-TDP"
- Easy to use software interface

👫 PC400 Datalogger Support Software - FLGS-TDP-1 (CR1000)					
<u>File Setup/Connect Monitor Co</u>	ollect Options Tools Help				
Setup/Connect Moni	itor Values 🚽 🚽 Collect Data	🛄 🔯 🐔 📾 Split View Short Cut CRBasic Edlog			
Disconnect Add D	📬 🕅 🏭				
		Datalogger Clock			
		Datalogger 6/14/2006 2:22:10 PM			
FLGS-TDP-1		PC 6/14/2006 2:22:10 PM			
		Pause Clock Update			
Datalogger Information Datalogger Name: FLGS-TDP Datalogger Type: CR1000		Set Clock 0 hours			
Direct Connect Connect COM Port: COM3	ction	Datalogger Program			
Datalogger Settings Baud Rate: 115200 PakBus Address: 1		Current Program FLGS-TDP.CR1			
Security Code: 0 Extra Response Time: 0s Max Time Online: 0d 0h 0m		Select and Send Program			
]					
		Connection Time 0:00:04			

Software: Connect to Logger

- Connect
- Set Datalogger Clock
- Associate Program v/s send program
- Monitor Values
- •Collect Data

System Programming

Constant Name	Units	Value		Range	Remarks
		Default	Maintenance		
INT_SCAN	Sec	60	5	0 - 60	Interval between sensor
					measurements
INT_AVG	Minutes	60	1	0 - 60	Log/ storage interval
NUM_TDP	Number	32	32	0 – 32	Numberof TDP sensors
NUM_TC	Number	32	32	0 - 32	Number of thermocouple/
					measurements among all the
					TDP sensors
DTMIN	Deg C	0.2	0.2	0-3	DT below which data is ignored
WARMUP_MIN	Minutes	60	1	0 - 120	Sensor warmup time
FIELDINDEX	Sq. cm	1	1	Area sq.cm	Average field index (stem area/
					sapwood area/ LAI)
FLAG_INDEX_EN		0	0	0 or 1	scaling flag (1-Enable)
FLAG_VOTE_EN		0	0	0 or 1	voting flag (1-Enable)
PS_ENABLE		1	0	0 or 1	Power save flag (1-Enable)
PS_START	Number	1260	1260	0 – 1440	Power save start time
PS_STOP	Number	300	300	0 – 1440	Power save stop time
ZERO_ENABLE		1	0	0 or 1	Auto-zero flag (1-Enable)
ZERO_STARTHOUR	Hour	2	2	0 – 24	Auto zero start hour
ZERO_STOPHOUR	Hour	5	5	0 – 24	Auto zero stop hour
ZERO_DAYINT	Number	3	3	0 - 10	Interval between auto zero
					performing days.

Syntax of a TDP sensor definition in FLGS-TDP is

InputTDP# = "TDP Type, Index Area, dTM1, SA1, dTM2, SA2, dTM3, SA3"

Dynamax, Inc 2006

Software: Numeric Display

- Add
- Select variables to be displayed
- Select Cell
- Paste

🗱 PC400 Datalo	gger Support	i Software -	FLGS-TDP-	1 (CR1000)			
<u>File S</u> etup/Connect	<u>M</u> onitor Coll	lect <u>O</u> ptions	<u>T</u> ools <u>H</u> elp				
The setup/Connect Monitor Values Collect Data							
Add Delete Port/Flag Decimal Places: 2 🚖 Update Interval: 00 m 01 s 000 ms 📚							
RecNum	78.00 TC	C_dTCa(1)	10.12	TC_Vel(1)	0.00	C_Flow(1)	145.70
TimeStamp	26:02 PM TC			TC_Vel(2)		C_Flow(2)	145.70
	ТС	C_dTCa(3)	NAN	TC_Vel(3)	0.00 T	C_Flow(3)	0.00
	TC	C_dTCa(4)	NAN	TC_Vel(4)	0.00 T	C_Flow(4)	0.00
	TC	C_dTCa(5)	6.72	TC_Vel(5)	0.01 T	C_Flow(5)	1,088.00
	TC	C_dTCa(6)	NAN	TC_Vel(6)	0.00 T	°C_Flow(6)	0.00
TC_dTM(1)	12.00 TC	C_dTCa(7)	NAN	TC_Vel(7)	0.00 T	C_Flow(7)	0.00
TC_dTM(2)	12.00 TC	C_dTCa(8)	7.25	TC_Vel(8)	0.01 T	C_Flow(8)	1,164.00
TC_dTM(3)	12.00 TC	C_dTCa(9)	NAN	TC_Vel(9)	0.00 T	C_Flow(9)	0.00
TC_dTM(4)	12.00						
TC_dTM(5)	14.00						
TC_dTM(6)	12.00						
TC_dTM(7)	13.00						
TC_dTM(8)	15.00						
TC_dTM(9)	12.00						
Connection Time 0:03:55							
						The contrained one	

Data Format

Table Name	Description	Variables
Status	Data loggers status table	
Public	Programs public table, contains all the public variables at any given time	
TableDT	Table of differential temperatures between the logging events	DT(1) - DT(32)
TableTC	Table containing differential temperature and sap flow calculation variables for all the thermocouples, battery voltage, panel temperature, heater voltages	JDAY JHM dTC(1) - dTC(32) dTM(1) - dTM(32) Vel(1) - Vel(32) Flow(1) - Flow(32) Status(1) - Status(32) HtrV(1) - HtrV(4) Batt_Volt PTemp_C
TableTDP	Table containing calculated sap flow data and indexed sap flow data along with statuses for all the TDP sensors	JDAY JHM TDP_Flow(1) - TDP_Flow(32) TDP_FlowIx(1) - TDP_FlowIx(32) TDP_Status(1) - TDP_Status(32)
TableHR	Table containing accumulated total hourly sap flow from all the sensors	JDAY JHM Hr_Flow
<u>TableDY</u>	Table containing accumulated total daily sap flow from all the sensors	JDAY DY Flow

TableDT – The raw DT, differential temperatures with date and time stamps.

TableTC – Raw sensor temp signals, maximum dT @zero; Velocity, flow, and status

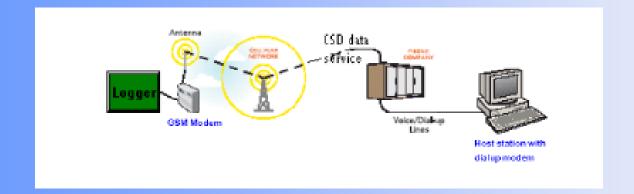
TableTDP – Computed hourly flow rates, indexed sap flow, and sensor status

TableHR – An indexed sap flow for all sensors combined

TableDY – Accumulated daily sap flow with one daily total, a day by day report.

Communications: RFMX

- Programmable using software
- 900MHz / 2.4 GHz
- Distances 40 Miles/ LOS with directional antenna; 14 Miles/ LOS
 - Use of Repeater for longer designs
 - Antenna and surge protector design


•Power supply

- 9 Volt DC; Solar panel/battery power design for remote site
- Sleep mode option
- Software programmable radio modules
- •7 independent channels
- •Point-point, Point-multipoint, Multi-network communication features
 - Module and channel selection for multi-point and multi-network operation
- •Approved FCC, Industry Canada

Dynamax, Inc 2006

Communications: GSM

- •Software setup for base modem and remote modem
- Transparent operation
- Low power
- Connect to any location with Cellular wireless network

Communications: Network

- Point-Point, Point-multipoint configurations
- Transparent operation
- •Low power
- •Connect to any location with Cellular wireless network
- •Hybrid network of CR1000 loggers using GSM, RFMX and serial communication cable.
- •Integrated communication kit with antenna and accessories

Sap Flow Applications

Water Balance **Plant transpiration Disease Effects Fertilizer** Efficacy **Greenhouse** Management **Irrigation Scheduling Phytoremediation Global Climate Change**

Water Balance Research

- Perform Water
 Balances
- Watershed Studies

Transpiration Research

- How much water do plants use?
- Measure plant stress
- Fertility effects on plants
- Varietal differences
- University Plant Scientists
- Plant Physiologists
- Environmental Engineers -Ecologists
- USDA-AG Research Service
- Agri-chemical Companies
- Forestry Research

Dr. Stan Wullschleger Oak Ridge National Lab Environmental Services Division Oak Ridge Tennessee USA www.ornl.gov

Whole-plant water flux in under story red maple exposed to altered precipitation regimes. <u>Tree Physiology</u> 18, pages 71-79 1998

Phytoremediation of Pollution

In-situ risk reduction of contaminated soils / water with living green plants -Extraction = K * T

- How much pollutants do plants take up?
 - Stabilize immobilize contaminants
 - Voltilize transpire & reduce compounds
 - Extraction uptake of metals
 - Rhizofiltration
- Measure plant stress due to toxicity
- Variety differences, species selections
- Tree based containment of contaminated water plume, hydraulic barrier

 $\mathbf{K} = \mathbf{Concentration}$ in Water, $\mathbf{T} = \mathbf{Transpiration}$ rate,

CFC = Clorofluorocarbon, DNAPL=dense non-aqueous phase liquids,

MTBE = gasoline additive - oxidant

Examples

- TNT, Chemical Bio warfare
- CFC, Cleaners, Solvents, MTBE Lead, Mercury, Radioactive DNAPL, Oil, MTBE

Dynamax, Inc 2006

Global Climate Change Research

- Open Chamber Research for Elevated CO2
- Study plant water relations in high CO2 conditions
- **CO2** Flux =f(Transpiration)
 - Carbon sink credits
 - **T** = **f** (CO2 Concentration)
- Environmental Protection Agency
- AMERIFLUX Carbon flux Network
 Fluxnet Euroflux
- NASA
- Energy Department DOE

