SM150

Soil Moisture Sensor

Quick Start Guide Version 1

SM150 overview

1 Cables and Accessories

Logger Extension cables can be joined up to a maximum length of 50m. Align connectors carefully <u>before</u> pushing parts together.

Screw together firmly to ensure the connection is water-tight.

2 Installation

Surface installation and spot measurements

- Clear away any stones. Pre-form holes in very hard soils before insertion.
- Push the SM150 into the soil until the rods are fully inserted. Ensure good soil contact.
- If you feel strong resistance when inserting the SM150, you have probably hit a stone. Stop, and reinsert at a new location.

Installing at depth

- Auger a 45mm diameter hole. ~10° to vertical is recommended.
- Fit an extension tube to the SM150 remember to pass the cable through the extension tube and fit the connector first.
- Push the SM150 into the soil until rods are fully inserted. Ensure good soil contact.

Alternatively

Dig a trench, and install horizontally. (see Overview diagram).

Note: Extension tubes are available for installing the SM150 in an augered hole.

3 HH150 Meter

- Connect the SM150 to the HH150 meter.
- With the meter OFF, press the right off - menu button. This wakes and allows you to set the meter to display readings - either as % volumetric water content of Mineral or Organic soils, or to show the sensor output in Volts.
- Press off to save the current Setting and turn the meter off.
- With the meter off, press the left **on read button** to take a reading. Repeat as required. You may wish to write down the readings.
 - The meter will sleep after 30 seconds.
 - The battery should last for about 10,000 readings.

4 HH2 Meter

Use version 2.6 or later of both the PC software HH2Read and the HH2 firmware if possible (or see footnotes).

- Connect the SM150 to the HH2 meter.
- Press **Esc** to turn the meter on, and if necessary press again until the HH2 displays the start-up screen.
- Set the meter to read from an SM150:
 - Press **Set** and scroll down to the **Device** option.
 - Press Set again and scroll down to select SM150.
 - Press **Set** to confirm this choice.

Delta-T Devices ∆TMoisture Meter

- Make sure the HH2 is correctly configured for your soil type:
 - At the start-up screen, press **Set** and scroll down to the **Soil Type** option.
 - Press Set again and scroll down to the appropriate soil type (use Mineral for sand, silt or clay soils or **Organic** for peaty soils) Soil Type:
 - Press **Set** to confirm this choice.
- Choose the units you want for displaying readings:
 - At the start-up screen, press **Set** and scroll down to the **Display** option.
 - Press **Set** again and scroll down to select units.
 - Press Set to confirm this choice.
- Press **Read** to take a reading.

SM150 Store? 20.3%vol

Mineral

- Press **Store** to save or **Esc** to discard the reading.
- Remove the SM150 from the soil and move to a new location...
- If you have saved data, connect your HH2 to a PC and run *HH2Read* to retrieve the readings.

Note: For an upgrade contact Delta-T. See also: HH2 User Manual and

HH2 User Manual Addendum to V4 - SM150 Support

5 Data Loggers

- Connect the SM150 soil moisture output as a differential powered sensor.
- Configure the logger input as a voltage sensor, using the look-up tables or polynomial coefficients as shown on page 9

Note: The SM150 has been optimised for a 0.5 to 1 second warm-up period. Do not power the sensor continuously.

GP1

Up to 4 SM150s can connect to a GP1.
 Channels 1 & 2 are wired as differential powered sensors.
 Channels 3 & 4 are wired as single-ended powered sensors*.

Channel 1 wiring connections (channel 2 is similar):

SM150 wiring	Colour	GP1 terminal
Power 0V	brown	CH1 (GND)
Power V+	white	CH1 (PWR)
Signal HI	blue	CH1 (+)
Signal LO	black	CH1 (-)
Cable shield	green	CH1 (GND)
Not used	grey	Not connected

Channel 3 wiring connections* (channel 4 is similar):

SM150 wiring	Colour	GP1 terminal
Power 0V	brown	Temp3 (GND)
Power V+	white	CH1 (PWR)
Signal HI	blue	Temp3 (IN)
Signal LO	black	Temp3 (GND)
Cable shield	green	Temp3 (GND)
Not used	grey	Not connected

- Using DeltaLINK logger software (version 2.6* or later) configure each channel by choosing Sensor Type SM150 from the sensor menu.
- * Note: Reading accuracy on channels 3 and 4 is reduced by long sensor cables. For configuration details see the *GP1 Quick Start Guide*.
- * Download the latest version of the DeltaLINK logger software from www.delta-t.co.uk or from our **Softaware and Manuals CD** issue 3 or later

DL₆

- Up to 6 SM150s can connect to a DL6 logger.
- Each is wired as a differential, powered sensor.

These details illustrate connection to channel 6:

SM150 wiring	Colour	DL6 terminal
Power 0V	brown	0V
Power V+	white	V+
Signal HI	blue	IN+
Signal LO	black	IN-
Cable shield	green	רלידו
Not used	grey	Not connected

Use DeltaLINK logger software (version 2.6* or later).

For configuration details see the DL6 User Manual.pdf*

* Download the latest version of the DeltaLINK logger software from www.delta-t.co.uk or from our **Softaware and Manuals CD** issue 3 or later

DL2e

- Up to 60 SM150s may be connected.
- Each is connected as a differential, powered sensor.

These details illustrate connection to Channel 58 using a LAC1 input card configured in 15-channel mode, and warm-up channel 63:

SM150 wiring	Colour	DL2e terminal
Power 0V	brown	CH62- or 61-
Power V+	white	CH63 NO
Signal HI	blue	CH58+
Signal LO	black	CH58-
Cable shield	green	CH61- or 62-
Not used	grey	Not connected

Configure the chosen DL2e logger channels by selecting the appropriate **SM150** sensor types from the LS2Win sensor library. You need Ls2Win version 1.0 SR8 or later*.

For configuration details see the *DL2e User Manual* or *LS2Win Help*.

* Download the latest version of the Ls2Win logger software from www.delta-t.co.uk or from our **Softaware and Manuals CD** issue 3 or later

6 How to calculate soil moisture

	Example
Take a reading with the SM150 either	V = 0.294 volts
Convert the reading to $\sqrt{\varepsilon}$ using equation 1 or the linearisation table below.	$\sqrt{\varepsilon} = 3.52$
Then convert $\sqrt{\varepsilon}$ to soil moisture, θ , using the soil calibration values (a_0, a_1) .	θ = 22.9% for mineral soil
or	
Convert directly for mineral or organic soils using equations 2 or 3	$\theta = 22.9\%$

Conversion to √s.

Polynomial (for use over the full range of SM150 readings)

$$\sqrt{\epsilon} = 1.0 + 14.4396V - 31.2587V^2 + 49.0575V^3 - 36.5575V^4 + 10.7117V^5 \dots (1)$$

where V is the SM150 output in volts

Linearisation table (for use over the full range of SM150 readings)

V	√ε								
0.000	1.000	0.300	3.576	0.600	5.101	0.900	6.778	1.200	8.924
0.075	1.942	0.375	3.964	0.675	5.503	0.975	7.232	1.275	9.743
0.150	2.620	0.450	4.337	0.750	5.917	1.050	7.720	1.350	10.808
0.225	3.144	0.525	4.713	0.825	6.342	1.125	8.270	1.425	12.242

Conversion from $\sqrt{\varepsilon}$ to Soil Moisture

- Soil moisture $\theta = (\sqrt{\varepsilon} a_0)/a_1$
- Use these generalised soil calibration values for mineral and organic soil types, or carry out a soilspecific calibration to derive your own values See SM150 User Manual.

	a_{0}	$a_{\scriptscriptstyle 1}$
Mineral	1.6	8.4
Organic	1.3	7.7

Multiply x100 to convert soil moisture from m³.m⁻³ to % volumetric.

Direct conversion for Mineral and Organic soils

$$\theta_{mineral} = -0.0714 + 1.7190V - 3.7213V^2 + 5.8402V^3 - 4.3521V^4 + 1.2752V^5 \dots (2)$$

7 Check Sensor is working

Air reading

Hold the SM150 in air and away from other objects and take a reading using an HH150 meter, or an HH2 meter or voltmeter or a logger with no more than 5m of cable. In air the reading should be 0 ±4mV (Note: the HH150 reports under-range if the reading is less than zero.)

Warning: Do not touch the pins

Try not to touch the pins. A typical electrostatic discharge from your body can create a temporary offset in sensor readings for up to one hour.

Water reading

Measure the output in voltage.

In the UK the sensor will typically read about 1.5 volts in tap water (because the salinity is typically 50mS.m-1).

The "water reading" you get will depend on the salinity of your local water.

Note: HH150 meter indicates "TOO WET" above 1.5V or 85% vol.

Soil moisture readings are not correct when no soil is present i.e. at 100% vol.

SM150 tables and polynomial constants are optimised at 220 mS.m⁻¹ for soil moisture values below 70%vol

Graph: showing the effect of salinity on SM150 sensor output when fully immersed in water with no soil present.

Accuracy	±3.0% vol over 0 to 70 % vol and 0-60°C *
Measurement range	0 to 100% vol but less accurate above 70%vol**
Salinity error	\pm 5% vol over 100 to 1000 mS.m $^{-1}$ and 0-60% vol
Conductivity response	See SM150 User Manual
Temperature sensitivity	See SM150 User Manual
Sampling volume	See SM150 User Manual
Output signal	0-1 V differential ≈ 0 to 60% nominal
Output compatible with	HH150, HH2, GP1, DL6, DL2e
Maximum cable length	1m (HH150 meter)
	100m (GP1, DL6 and DL2e data loggers)
Power requirement	5-14VDC, 18mA for 1s
Operating range	-20 to +60°C
Environment	IP68 ***
Sample volume	55 x 70mm diameter
Dimensions/Weight	143 x 40 mm diameter/ 0.1 kg

^{*} Note: See full specification in SM150 User Manual

^{***} With Delta-T supplied cables

^{**} In water (no soil present) the reading may not be 100% vol. It depends on a0 and a1 but can still be used as a quick check that the unit is working.

Field of sensitivity

This graph shows the effect of being too close to the wall of a plant pot and gives a partial indication of the shape of the field of sensitivity around the pins

9 Care and Safety

- Do not touch the rods or expose them to other sources of static damage, particularly when powered up.
- Keep the SM150 in its protective tube when not in use.
- Ensure that the connectors are clean, undamaged and <u>properly aligned</u> before pushing the parts together. Screw together firmly for water-tight seal.
- Do not pull the sensor out of the soil by its cable.
- If you feel strong resistance when inserting into soil, it is likely you have encountered a stone. Stop pushing and re-insert at a new location.

Delta-T Devices Ltd 130 Low Road Burwell Cambridge CB25 0EJ England (UK)

Tel: +44 1638 742922
Fax: +44 1638 743155
E-mail: sales@delta-t.co.uk
Web: www.delta-t.co.uk